Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets
نویسندگان
چکیده
Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy (XPS) analysis of nanoporous graphene nanosheets indicated that the structure of nano-pore was irregular and the oxygen-containing groups in the surface were limited. More importantly, the as-prepared MMMs presented better separation performance than that of pristine EC membrane due to simultaneous enhancement of C3H6 permeability and ideal selectivity. The ideal selectivity of the MMMs with 1.125 wt‰ nanoporous graphene content for C3H6/C3H8 increased from 3.45 to 10.42 and the permeability of C3H6 increased from 57.9 Barrer to 89.95 Barrer as compared with the pristine membrane. The presumed facilitated mechanism was that the high specific surface area of nanoporous graphene in polymer matrix increased the length of the tortuous pathway formed by nanopores for the gas diffusion as compared with the pristine graphene nanosheets, and generated a rigidified interface between the EC chains and fillers, thus enhanced the diffusivity selectivity. Therefore, it is expected that nanoporous graphene would be effective material for the C3H6/C3H8 separation.
منابع مشابه
Highly Efficient Recovery of Propane by Mixed-Matrix Membrane via Embedding Functionalized Graphene Oxide Nanosheets into Polydimethylsiloxane
To construct rapid C3H8 transport pathways in polymer matrix, alkyl chain-functionalized graphene oxide (GO) was prepared via grafting octadecylamine (ODA) molecules and then embedded into polydimethylsiloxane (PDMS) matrix to obtain high-efficiency mixed matrix membranes (MMMs). The incorporation of alkyl chains contributes to lowering the surface energy of GO nanosheets and providing higher a...
متن کاملSynthesis of Calcium Fluoride Ultrafine Particles for the Preparation of Integral Asymmetric Cellulose Acetate/Calcium Fluoride Membranes
The present work reports on the synthesis of cellulose acetate (CA) asymmetric membranes with the incorporation of inorganic fluorides, CaF2 particles. These fillers of polymeric composites can, according to the literature, promote the ordering of the polymer matrix, which can lead to interesting permeation properties. In order to achieve that, fluorite (CaF2 ) fine particles were prepared by a...
متن کاملIncorporation of Graphene-Related Carbon Nanosheets in Membrane Fabrication for Water Treatment: A Review
The minimization of the trade-off between the flux and the selectivity of membranes is a key area that researchers are continually working to optimise, particularly in the area of fabrication of novel membranes. Flux versus selectivity issues apply in many industrial applications of membranes, for example the unwanted diffusion of methanol in fuel cells, retention of valuable proteins in downst...
متن کاملPurified and Functionalized MWCNTs: Application In CO2/CH4 Separation Using Mixed Matrix Membranes
To fabricate a defect free and high performance mixed matrix membrane (MMM), one approach is the functionalization of inorganic nanofillers (as dispersed phase) in the organic polymer matrix (as continuous phase) to modify the interactions between two phases. For this purpose,, raw multi-walled carbon nanotubes (rMWCNTs) were purified by acid mixture (HNO3/H2SO<sub...
متن کاملNano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation
A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...
متن کامل